T Towards a Perspective of Hybrid Approaches and Methodologies in Recommender Systems
نویسنده
چکیده
Recommender Systems apply machine learning and data mining techniques to filter undetected information and can predict whether a user of a system would like a given resource based on his/her interests and preferences. To date a number of recommendation algorithms have been proposed, where Collaborative Filtering (CF) and Content-Based Filtering (CBF) are the two most famous and adopted recommendation techniques. CF Recommender Systems recommend items by identifying other users with similar taste and use their opinions for recommendation. CF Recommender Systems suffer from problems and challenges such as scalability, first rater (new item), data sparsity and cold-start problems. On the other hand, CBF Recommender Systems recommend items based on the content information of the items and match these items with interest and preferences of a user and therefore suffer from an overspecialization problem. In order to generate accurate and good recommendations, Hybrid Recommender Systems combine CF and CBF Recommender Systems to avoid the above aforementioned problems and challenges. This paper initially discusses Recommender Systems in general, then presents an overview of the state-of-the-art research in the area of Hybrid Recommender Systems, specifically from the perspective of types, applications, architectures and algorithms and finally discusses relevant open issues of Hybrid Recommender Systems.
منابع مشابه
A New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملHybrid Recommender System Based on Variance Item Rating
K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...
متن کاملAn ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملHybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012